CCARES SONTROL OUTGOING LTR NO

50676

E ORDER# 4700, /

5 R F 0 1602

73 Kr0/6	٠.	_
DIST	しつ	SAC
AMARAL ME		
BURLINGAME AH		_
BUSBY W S	_	_
BRANCH DB	_	_
	_	_
CARNIVAL GJ		
DAVIS J G		_
FERRERA DW	_	
FRAY RE		<u></u>
GEIS JA	<u> </u>	
GLOVER WS		L
GOLAN PM		<u></u>
HANNI BJ		
HARMAN LK		
HEALY TJ		
HEDAHL T		
HILBIG J G		_
HUTCHINS N M		_
JACKSON DT	_	
KELL RE	-	-
KUESTER AW	-	-
	-	-
MARX G E	-	-
McDONALD M M	-	-
MCKENNA F G	-	
MONTROSE JK	-	-
MORCAN RV	-	├
POTTER GL	-	├
PIZZUTO V M	_	
RISING TL	_	 -
SANOLIN NB	<u> </u>	┡-
SCHWARTZ J K	_	
SETLOCK GH	_	_
STEWART DL	_	<u> </u>
STIGER S G	_	1_
TOBIN PM	_	-
VOORHEIS G M	L	
WILSON J M	<u> </u>	<u> </u>
C.A. BILHER	1	1
N. A. HOLSTER	ر ا	1-
R. A. RANDAL	-	1
M, L, 4000		1/
I. W. CHROMSO		1/
CORRES CONTROL	X	X
ADMN RECORD/080	1	7
TRAFFIC		1
PATS/T130G		1
, -11-0111-05-0	_	

CLASSIFICATION

UCNI		
UNCLASSIFIED	1	
CONFIDENTIAL		
SECRET		

AUTHORIZED CLASSIFIER DOJUMEIS NOT SELECTION REVIEW WANTER PER GLATESTFICATION OFFICE

IN REPLY TO RFP CC NO

ACTION ITEM STATUS PARTIAL/OPEN J CLOSED LTR APPROVALS

ORIG & TYPIST, INITIALS

EG&G ROCKY FLATS

EG&G ROCKY FLATS, INC ROCKY FLATS PLANT, P O BOX 464, GOLDEN COLORADO 80402 0464 (303) 966 7000

February 8, 1995

95-RF-01602

Kurt Muenchow Environmental Restoration Division DOE, RFFO

EVALUATION OF ARSENIC IN OPERABLE UNIT (OU) 5 AND OU 6 IN COMPARISON TO BACKGROUND - CAB-014-95

Ref J M Roberson Itr, 08074, to S G Stiger, Interim Guidance on Operable Units 5 and 6 Risk Assessment Calculations, January 30, 1995

Action Review

This letter is in response to the referenced letter requesting a technical argument supporting the exclusion of arsenic as a Chemical of Concern (COC) in OU5 and OU6

Attached is the evaluation of arsenic for groundwater, pond sediments, and stream sediments for you review. Arsenic was not considered a COC in other media. Also, included is a spatial distribution evaluation for arsenic on a sitewide level

OU 5 and OU 6 risk assessments are proceeding without arsenic included as a COC until further guidance

Please review the attached information After your comments have been satisfactorily resolved, this correspondence will be formally sent to the Department of Energy (DOE)

Should you have any questions or concerns regarding this issue, please call Neil Holsteen at 966-6987 or Carol Bicher 966-9100

Ed C Mast

Operable Unit No 5, 6 & 7 Closures

Environmental Restoration Program Division

CAB cb

Orig and 1 cc - K Muenchow

Attachment As Stated

ADMIN RECORD

ARSENIC AT RFETS

DRAFT

During the January 25, 1995 meeting between DOE, RFFO and OUs 5 and 6 EG&G staff, DOE requested that EG&G provide technical information on the available process knowledge on arsenic usage at RFETS and an additional data evaluation for arsenic detected in OUs 5 and 6 The purpose of this letter is to provide this information

Process Knowledge

As stated in the January 31, 1995 correspondence to Kurt Muenchow, DOE/RFFO, from Ed Mast, EG&G ERPD, EG&G reviewed the Reconstruction of Historical Rocky Flats Operations & Identification of Release Points (CDH, 1992) and the Historical Release Report for the Rocky Flats Plant (EG&G, 1992) and found no discussion of arsenic being used and/or released from any of the past processes at RFETS. Since then, an attempt was made to further document any possible uses of arsenic at RFETS, such as a pesticide for grasshopper control prior to the 1960s or 1970s. The ERPD librarian conducted an extensive search for references to arsenic in the sitewide databases. A majority of these references discussed arsenic as a sample analyte or within a general discussion of chemicals. One reference to the use of arsenic was as a chemical standard for the atomic absorption process in Building 771. However, no references were found indicating that arsenic was used in any large quantities at RFETS. Thus, it is unlikely that the arsenic detected in OUs 5 and 6 sediments results from onsite sources.

Arsenic Results in OUs 5 and 6

The arsenic results from environmental samples collected from OUs 5 and 6 are presented by medium in Table 1 and as follows

<u>Surface Soil.</u> Subsurface Soil. and Surface Water Arsenic was not listed as a PCOC for any of these media in either OU5 or OU6

Groundwater Initially, OU6 omitted total arsenic as a PCOC in groundwater samples using professional judgment, based primarily on the correlation between elevated metals concentrations and total suspended solids. Although EPA thought that this rationale "appears generally sound," they requested that DOE retain arsenic (as well as three other metals) as a COC in groundwater based on the fact that the maximum OU6 concentration is $18~\mu g/l$ and the PRG is 0 0038 $\mu g/l$ DOE agreed to handle this issue for OU6 in the same way as OU2 OU2 had received conditional approval on their COC TM with the understanding that a quantitative risk assessment will be conducted for arsenic in groundwater and the results included in the uncertainly analysis (rather than in the risk characterization) section of the HHRA. The risk from these metals, including arsenic, would not be added in with the risks

from the other groundwater COCs In light of the current discussions regarding arsenic, DOE may also want to rethink this agreement with the agencies

In the OU5 COC TM, arsenic was determined to be a COC for groundwater. The Gilbert Methodology statistical tests were not run for this constituent, due to the low frequency of detection (12%) for total arsenic in background groundwater from the Upper Hydrostratigraphic Unit (UHSU). The concentrations of total arsenic detected in wells within OU5 were compared to the background normal UTL_{99/99} (8.2 μ g/l) for total arsenic instead of the lognormal UTL_{99/99} (19.3 μ g/l) because the Background Geochemical Characterization Report (DOE, 1993) presented normal UTL values. Most naturally occurring elements are not normally distributed (Isaaks and Srivastava, 1989, EPA 1992), therefore, a comparison of the OU5 maximum concentration (13.3 μ g/l) to the lognormal UTL_{99/99} may be more realistic. The lognormal UTL comparison indicates that arsenic is not a COC in groundwater in OU5 Furthermore, calculation of statistical parameters for data sets with greater than 80% nondetects are invalid, and those between 50-80% nondetects are questionable (Helsel, 1990, Gilbert and Simpson, 1992)

The maximum concentrations reported in background groundwater for total and dissolved arsenic were 7 and 15 μ g/l, respectively (DOE, 1993). Although one would generally expect the maximum for "totals" to exceed that for "dissolved" (Hem, 1992), the inherent variability in sampling analysis leads to occasional exceptions, as in this case. All measurements of arsenic (total and dissolved) in OU5 groundwater are less than the maximum background value of 15 μ g/l for dissolved arsenic in background UHSU groundwater.

Metal concentrations in water are analyzed for both total (unfiltered) concentrations and dissolved (filtered) concentrations. Depending on the amount of suspended solids in the sample, these two analyses may yield very different results. In OU5, the maximum concentration of unfiltered arsenic in groundwater was 13 3 μ g/l, while that for filtered arsenic was 8 μ g/l. In OU6, the maximum level for unfiltered arsenic was 18 μ g/l and for filtered was 4 μ g/l. Since, in general, unfiltered concentrations for metals in groundwater are higher values, these are used in risk assessment in keeping with the philosophy of using the most conservative data to estimate risks

Pond Sediments Arsenic was determined not to be a COC in OU6 for this medium. Although arsenic was listed as a COC for pond sediments in the OU5 COC TM, further examination of statistical comparisons indicated that the OU5 data were compared to background stream sediments as well as seep/spring sediments due to the absence of background data for pond sediments. However, pond sediment data should have been compared to only background seep/spring data because they are both a zone of accumulation as opposed to stream sediments which are "in transport." None of the statistical tests indicated in significant difference in arsenic in OU5 sample data versus seep/sediment background samples.

Stream Sediments The only statistical test that indicated a significant difference in the populations of data in OU5 and OU6 samples versus background was the Gehan test. Due to the very small sample size for the OU data (n=8 for OU5, n=15 for OU6), and the apparent large number of nondetects in the background arsenic results, the results of the Gehan test need to be evaluated carefully. The Gehan test is evaluated below

The attached RFETS maps show the distribution of arsenic in stream sediments, pond sediments, and surface soils onsite and expanded offsite to include the OU3 reservoirs. The various color codes and values shown in the legend are the UTLs_{99/99} for these specific media 10.1 mg/kg for stream sediments, 12.9 mg/kg for surface soils, and 66.7 mg/kg for pond sediments.

Evaluation of Gehan Statistical Test

EG&G examined the statistical comparison of the OUs 5 and 6 stream sediment results to background. For stream sediments, as well as other media, the one test that was predominantly failed is the Gehan test. Although the Gehan test was proposed as a way to deal with multiple detection limits and is not supposed to be sensitive to sample size or number of nondetects, there is some concern regarding the validity of this statistical test when comparing data sets with small sample sizes or a large percentage of nondetects.

Helsel (1990) notes that, "In the most comprehensive review of these score tests (such as the Gehan), most of them were found inappropriate for the case of unequal sample sizes "(See Attachment A) Gilbert himself cautioned us about the use of the untested and unproven Gehan test Gilbert (1993) noted "As the performance of the Gehan test has not, in my opinion, been adequately determined, I recommend that statistical evaluations and comparisons of its performance with competing tests should be conducted by EG&G at the earliest time "Competing tests include the Wilcoxon Rank Sum and Kruskal-Wallis tests, which, according to Gilbert " are very well known by statisticians and practitioners, and are widely used in many fields of application" (Attachment B)

An evaluation of Gilbert's recommendations, including comparative testing of the Gehan test, was prepared by Dr Kenny S Crump, ICF Kaiser, at the request of EG&G Rocky Flats Dr Crump (1993) states as one of his conclusions that "For data containing nondetects, Gilbert recommends the *ad hoc* approach of applying the slippage and quantile tests to the ranks calculated in connection with the Gehan test rather than to the actual data This *ad hoc* procedure is invalid and can produce nonsensical results Consequently, it should not be applied under any conditions "

Weight of Evidence

Attachment C provides a series of tables showing the ranges of arsenic in rocks, surface soils, and sediments It should be noted that "the northern and southern parts of the (Front Range)

Corridor are underlain by marine shale, which typically contain larger amounts of trace elements " (Severson and Tourtelot, 1994) As seen in these tables, the values of arsenic found at RFETS are well within levels for background

Summary and Conclusions

Gilbert (1993), in describing Phase V of his statistical methodology, recommended the use of professional judgement in determining the validity of the background comparisons. His basic questions are (1) Do the results of the statistical tests make sense in light of what is known about the geology, hydrology, and geochemistry of the OU? and (2) Are the assumptions underlying the statistical tests valid? Gilbert also recommended a review of historical information on the operation of RFETS to determine consistency of that information with statistical test results

In summary of the information provided above, the following statements can be made concerning the source of arsenic in OUs 5 and 6 environmental samples, particularly stream sediments, at RFETS

- No large quantities of arsenic have been released or used in past RFETS process activities to act as a source
- Arsenic was not determined to be a COC in surface soils, subsurface soils, surface water, and pond sediments
- 3 The validity of using the Gehan test for these types of comparisons is questionable
- 4 Review of numerous literature sources suggests that arsenic concentrations detected at RFETS are well within background for the region

The application of professional judgment to evaluate the source of arsenic at RFETS supports the conclusion that arsenic detected in stream sediments, as well as other media, of OUs 5 and 6 should be considered as background values

SUMMARY OF ARSENIC DATA FOR OUS AND OU6	DATA F	OR OUS A	ND OU6	
	OUS	OU5 Results	000	OU6 Results
Medium	Mean	Maximum	Mean	Maximum
Surface Soil (mg/kg)	46	6 8	53	11 0
Subsurface Soil (mg/kg)	3.9	18 9	3 6	109
UHSU Groundwater - total (ug/l)	56	13 3	4 6	18 0
UHSU Groundwater - dissolved (ug/l)	4 1	8 1	3.9	4 0
Surface Water - total (ug/l)	4 4	5.7	47	99
Surface Water - dissolved (ug/l)	4 8	36	4 8	7 4
Seep Water - total (ug/l)	10U	10U	NA	NA
Seep Water - dissolved (ug/l)	NA	NA	NA	NA
Pond Sediments (mg/kg)	5 5	8 6	0 9	10 2
Seep Sediments (mg/kg)	5.7	6.5	NA	NA
Stream Sediments (mg/kg)	3.5	5.5	36	5 8
U = Not detected				
NA = Samples not taken in this medium	m			

8 Source. Br

Argum fluves between geochemical reservoirs Argum fluves between geochemical reservoirs This (10° g/y1) Tim I to recreated his ration and dust) almosphere (emission) Atmosphere (emission) Atmosphere 10	2cts of ar Nagmunde (10° g/1) 282 g 210 23 2380 612	3eh1c		(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Range usually reported	Aveiage
Attain, fluxes between geochemic il reservoirs I lux I lux I in 1 to I errestir il bia ta rimosphere (continental dust) 283 ocean (trver suspended) 2 36 atmosphere (enission) 7 375 Atmosphere (enission) 7 376 Atmosphere (enission) 7 376	8717 8717 22 8 30 0 00 0					
Arcanic fluxes between geochemical reservoirs Hux (10 ² 1 ind to retreshed forth and state (10 ² 1 ind to retreshed forth and state ocean (110 et sispended) atmosphere (continent) Annosphere (enivsion) Annosphere (enivsion) Annosphere to	# # F F F F F F F F F		Ulirabasıc	11	0 3 - 16	10
Atsente fluxes between geochemic il teservoirs Hux (10 ²) Lind to retrestiri d bieta vimosphere (continent) 216 atmosphere (continent) 216 ocean (river suspended) 2 386 atmosphere (enission) 775 Aumosphere (enission) 775	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Basalts gabbros	146	0.06 - 113	2.0
Arcanc fluxes between geochemic il reservoirs Llux Llux (10° 1) Lind to rerestir d bicta almosphere (continent) dust) 282 unnosphere (continent) dust) 2 360 ocean (river dissolved) almosphere (emission) Annosphere (emission) 775	2.2 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Andesnes daches	4 5	05-58	7.0
Atsente, fluxes between geochemical reservoirs Llux Link	2 8 2 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Silver coference	2 \$	051-20	
iria (valiuci) suspended) dissolved) (emission)	2 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				1	:
ria (soninental dust) suspended) dissolved) (emission)	2 8 8 7 1 1 2 8 2 8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		Sedimentary			
tia (Sapor) (continental dust) suspended) dissolved) (emission)	2 2 8 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		Integores	5	01 - 30	1.7
tta (vatori) (contincutal dust) suspended) dissolved) (emission)	2 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		Sandstones	: =	0 6 - 120	2.0
tia (continental dust) suspended) 2 dissolved) (emission)	2 8 5 0 2		Shules and clays	324	0 3 - 490	14.5
(continental dust) suspended) discolved) (emission)	, 0 \$ 0 \$		Phosphorites	286	80 - P C	22 u
(continental dust) 2 suspended) discolved) (emitssion)	2 0 5		Sedimentary non ores	110	1 2 900	400
suspended) 2 dissolved) (emission)	2		Sedimentary in inganese ores	•	(up to 1 5°s)	
dissolved) (emission)	2		Coal	051 1	0 - 1 000	2
(cniksion)			1	0.000	5017	
Aimosphere 10	9.3			data of Omishi (1969) a h arsens, at 490 ppm	Filinated on the basis of data of Onish (1969) and Hoyle and Jonasson (1974) Excluding one sample with arems at 490 ppm	G.
			c Boyle and Joursson (1973) gave 4 ppun	I) kave 4 ppm		
1 md (mm) bm l	c					
	€0	Arsenic concentrations in stoli	concentrations in sediments and biota of treshwater ecosystems	s) siems		
Ocean (rain) 1 970 Ocean (dust) 13	0 ~	Author	Location	Range of sediment	Range of As concentrations in biota	ons in biota
c) wey o				arsenic concentrations (mg/kg)	plants	aquatic organisms
•						
1 947 9	19	Tsai et al 1979	Baltimore Harbor USA	13 - 22%	QN Q	QN
· ·		Reay 1972	Washaso River New Zealand	2055 96	8 - 971 (plants)	ND
מרססט מו		Lancaster et al 1971	Lake Arapuni Lake Ohakuri	Q	215 - 1 450 (likeweed)	Q
shelptal to certainment			Party Marine and Tombert	ţ		
<u>.</u>	29 3	Cureichus et ai 1978	CAKE MEHINAME ZIMBADWE	à	(plankton)	1 3 - 6" (Oligachacies Deathic insects fish)
biota to priticulate 38 9	6 2	9700		60		-
biola to dissolved 1 041 1		Price and Anight 1978	Lake Washington Mississippi and Sardis Reservoir U.S.A.	*	21 74 (plankton)	0 41 (clams)
	ς -				ć.	(
particulate to sediment 2 435 9	- 6	Aobajashi and Lee 1978	Browns Lake Wisconin U.S.A.	4 - 107	Q.	ON.
Terresinal		Heir et al 1980	Lake George New York USA	<u>د</u> د	QN	0 2 - 0 3* (mussels)
biota to land 292 8	&	Ruppert et al 1974	Chautaugua New York	<0 5 - 106°	۵	Q
Volvanie 10						
		Wagemann et al 1978	ham Lake Northwest	100, 1 - 07	250 - 970° (plants)	0 820 (pelecypods
			Territories Canada			oligodraetes ephemerophiera
-	•					trichoptra chironomidae
Pind the barrier to t						zooplankton hemiptera
						amphoods)
Sediments to		0.01		Ç	ç	
land 2 400		בירוש ביו קו יוני		2	2	
Vinna		l'akkala et al 1977		QN	QN	
433		a Wet weight basis				
a Data from Mackenzie et al (1979)		a Wel weight basis b Dry weight basis				

(99;		,
Hire clements		
pui		
ninor		
,"		
The state of the change of the	ITTH S CLUST THE SCHIMETH'S THE COST - THE STATE OF THE S	
	٤	
•	t lo notheonne	
	[1], cm, cf. al	
	:	14
		_

Inply 42 Elem	Indicate Elemental composition of a	on or me cann seen							41.0
Element	Mean crust	אלבשוו בבלוווורחו	Averige shale	Deep ser clas	Shallow water	River sus	S undstone'	Limestone	. 1105
						-			300
			•	٠,00٠	ار (ا	ه ۱۹ کړ	12.7°a	0/71	9 0 0
Silicon	ه <i>در د</i>	, C	./ J. o	9 9 9	2 T 4	° 0 † (1)	, t	0.40	
Aluminim	ه د ۶	7 200	, 0.°	- TO		186	3 0°6	1 7%	3.7%
Iron	°-	7 1%	470	• • •	• 10		۲۱۰,	14 0%	200
1011		9,99	2% د د	3 c) c	8 . fo . i			0.46.	0.8%
Cakaum			76.1	2 1%			• • 1		91 -
Nf 1 ncsinm	٠, ۲	• • • • • • • • • • • • • • • • • • • •	0/1		10%	0.70	"O.	* <u>;</u>	-
Sodium	23.	0.64.	10%	• 5 F		٠,00	100	0 1%	% -
Policelim	7 1%	200	2 7 و				%10	%t00	() کو،
1 (1) (33)(4)(1)	, v C	.010	0.5%	0 %	0 7%	0/O/O		000	003
luniurii j	*/ n n	•	(A)/C	1 500	550	-150	0	8 8	070
Phosphorus	900	0/4	2 5	200	X 50	1 0 2 0	160	079	00/
M me mest	000	170	550	800		009	320	8	\$ (\$
Dorman	905	99	580	9	1 3	99	וננ	610	278
Danian	07.6	טרנ	140	011	160	20	010	90	373
Strontlum	0/0	0.27	770	9	01.	1	770	2	
Zirconium	<u>8</u>	2	001	2 5	571	170	೪	5	801
Vanadum	991	201	20	P. :	2 5	2 2	35	=	84
Chromina	1001	77	S	Ş	S :	200	, 0	,	7
	(,)	ς.	89	25	35	3	, ;	٠ بر	9
Nickel Nickel	(,) ₍₁₎	4 6	\$6	165	92	350	9	, ·	3 2
Zinc	2	S	·	9,0	95	001	2	51	و ۽
Copper	8	33	? :	2, -	2 =	0ر	03	0.1	
Cobalt	65		2	Į!	: ה	ř	38	7.5	¥
Libium	20	\$	99	7	::) <u>-</u>	· -		01
Complian	91	9	13	61	7 :	<u>o</u> :	٠ -	5.7	65
Scandinia.	2 =	2 9	20	9	נן	961	2 9		-
Lend	<u>.</u> '	2:	, ~	9	1	9	60	C O ·	, -
Cestum	0	7 (٠,	٠ ۲		1	_ V	_	C -
Berylhum	5 6	7	7	9 -		-	0.5	C.	7.7
(Jr.mm)	ر. 4		1.7		, ,	•	0.5	0.5	28
Tin T	2.2	7 6	09	<u> </u>	., -		(6	0.2	19
Mohabelonm		20	3.6	7.	- '	,	; -		= 3
is to the contract of the				<u>.</u>	~	^	_ `	- 0	: -
Arscnic	2 :		-	-	1	ı	0	0 1	
Tungsten	0 -	·	0 4			2.5	005	03	\ 1
Antimony	0.5	1.2	2		,	_	000	003	90
Cadmum	011	017	0.77	7.0		• 1	0.25	0 12	04
Silver	0 0 0	900	000	110	ı	l	60	910	0.1
Manual	0.05	610	0 18	800	1	•		100 /	0.4
Meicuiy	500	cF0	900	0 17	1	•	100 >		
Scientam	000				1. 1. 1.1.	(07,01)	IN .	Marowski and Wedepolal (1971)	Lpohl (1971)
. Bowen (1979)	(67.6)	, Turc	Turcking and Wedepolif (1961)		NI ITHIN ING NICYOCCK (1272)	1 10d NICS OCCE (1973)	4	" Ure and Berrow (1982)	18.2)

1 Bowen (1979) Med Wedepohl (1968 1969 1971) Bowen (1979)
 Bowen (1979)
 Ifter Wedepohl (1968)
 Wedepohl (1969-1978)